Efficient CRISPR/Cas9 genome editing in a salmonid fish cell line using a lentivirus delivery system
Genome editing is transforming bioscience research, but its application to non-model organisms, such as farmed animal species, requires optimisation. Salmonids are the most important aquaculture species by value, and improving genetic resistance to infectious disease is a major goal. However, use of...
Gespeichert in:
Veröffentlicht in: | BMC biotechnology 2020-06, Vol.20 (1), p.35-35, Article 35 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Genome editing is transforming bioscience research, but its application to non-model organisms, such as farmed animal species, requires optimisation. Salmonids are the most important aquaculture species by value, and improving genetic resistance to infectious disease is a major goal. However, use of genome editing to evaluate putative disease resistance genes in cell lines, and the use of genome-wide CRISPR screens is currently limited by a lack of available tools and techniques.
In the current study, we developed an optimised protocol using lentivirus transduction for efficient integration of constructs into the genome of a Chinook salmon (Oncorhynchus tshwaytcha) cell line (CHSE-214). As proof-of-principle, two target genes were edited with high efficiency in an EGFP-Cas9 stable CHSE cell line; specifically, the exogenous, integrated EGFP and the endogenous RIG-I locus. Finally, the effective use of antibiotic selection to enrich the successfully edited targeted population was demonstrated.
The optimised lentiviral-mediated CRISPR method reported here increases possibilities for efficient genome editing in salmonid cells, in particular for future applications of genome-wide CRISPR screens for disease resistance. |
---|---|
ISSN: | 1472-6750 1472-6750 |
DOI: | 10.1186/s12896-020-00626-x |