Inversion of Ocean Subsurface Temperature and Salinity Fields Based on Spatio-Temporal Correlation
Ocean observation is essential for studying ocean dynamics, climate change, and carbon cycles. Due to the difficulty and high cost of in situ observations, existing ocean observations are inadequate, and satellite observations are mostly surface observations. Previous work has not adequately conside...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-06, Vol.14 (11), p.2587 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ocean observation is essential for studying ocean dynamics, climate change, and carbon cycles. Due to the difficulty and high cost of in situ observations, existing ocean observations are inadequate, and satellite observations are mostly surface observations. Previous work has not adequately considered the spatio-temporal correlation within the ocean itself. This paper proposes a new method—convolutional long short-term memory network (ConvLSTM)—for the inversion of the ocean subsurface temperature and salinity fields with the sea surface satellite observations (sea surface temperature, sea surface salinity, sea surface height, and sea surface wind) and subsurface Argo reanalyze data. Given the time dependence and spatial correlation of the ocean dynamic parameters, the ConvLSTM model can improve inversion models’ robustness and generalizability by considering ocean variability’s significant spatial and temporal correlation characteristics. Taking the 2018 results as an example, our average inversion results in an overall normalized root mean square error (NRMSE) of 0.0568 °C/0.0027 PSS and a correlation coefficient (R) of 0.9819/0.9997 for subsurface temperature (ST)/subsurface salinity (SS). The results show that SSTA, SSSA SSHA, and SSWA together are valuable parameters for obtaining accurate ST/SS estimates, and the use of multiple channels in shallow seas is effective. This study demonstrates that ConvLSTM is superior in modeling the subsurface temperature and salinity fields, fully taking global ocean data’s spatial and temporal correlation into account, and outperforms the classic random forest and LSTM approaches in predicting subsurface temperature and salinity fields. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14112587 |