Hydrogen Bond Strengthens Acceptor Group: The Curious Case of the C-H···O=C Bond
An H-bond involves the sharing of a hydrogen atom between an electronegative atom to which it is covalently bound (the donor) and another electronegative atom serving as an acceptor. Such bonds represent a critically important geometrical force in biological macromolecules and, as such, have been ch...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-08, Vol.25 (16), p.8606 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An H-bond involves the sharing of a hydrogen atom between an electronegative atom to which it is covalently bound (the donor) and another electronegative atom serving as an acceptor. Such bonds represent a critically important geometrical force in biological macromolecules and, as such, have been characterized extensively. H-bond formation invariably leads to a weakening within the acceptor moiety due to the pulling exerted by the donor hydrogen. This phenomenon can be compared to a spring connecting two masses; pulling one mass stretches the spring, similarly affecting the bond between the two masses. Herein, we describe the opposite phenomenon when investigating the energetics of the C-H···O=C bond. This bond underpins the most prevalent protein transmembrane dimerization motif (GxxxG) in which a glycine Cα-H on one helix forms a hydrogen bond with a carbonyl in a nearby helix. We use isotope-edited FT-IR spectroscopy and corroborating computational approaches to demonstrate a surprising strengthening of the acceptor C=O bond upon binding with the glycine Cα-H. We show that electronic factors associated with the Cα-H bond strengthen the C=O oscillator by increasing the
-character of the σ-bond, lowering the hyperconjugative disruption of the π-bond. In addition, a reduction of the acceptor C=O bond's polarity is observed upon the formation of the C-H···O=C bond. Our findings challenge the conventional understanding of H-bond dynamics and provide new insights into the structural stability of inter-helical protein interactions. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms25168606 |