Exponentiated Gradient Exploration for Active Learning

Active learning strategies respond to the costly labeling task in a supervised classification by selecting the most useful unlabeled examples in training a predictive model. Many conventional active learning algorithms focus on refining the decision boundary, rather than exploring new regions that c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers (Basel) 2016-03, Vol.5 (1), p.1-1
1. Verfasser: Bouneffouf, Djallel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Active learning strategies respond to the costly labeling task in a supervised classification by selecting the most useful unlabeled examples in training a predictive model. Many conventional active learning algorithms focus on refining the decision boundary, rather than exploring new regions that can be more informative. In this setting, we propose a sequential algorithm named exponentiated gradient (EG)-active that can improve any active learning algorithm by an optimal random exploration. Experimental results show a statistically-significant and appreciable improvement in the performance of our new approach over the existing active feedback methods.
ISSN:2073-431X
2073-431X
DOI:10.3390/computers5010001