Exponentiated Gradient Exploration for Active Learning
Active learning strategies respond to the costly labeling task in a supervised classification by selecting the most useful unlabeled examples in training a predictive model. Many conventional active learning algorithms focus on refining the decision boundary, rather than exploring new regions that c...
Gespeichert in:
Veröffentlicht in: | Computers (Basel) 2016-03, Vol.5 (1), p.1-1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Active learning strategies respond to the costly labeling task in a supervised classification by selecting the most useful unlabeled examples in training a predictive model. Many conventional active learning algorithms focus on refining the decision boundary, rather than exploring new regions that can be more informative. In this setting, we propose a sequential algorithm named exponentiated gradient (EG)-active that can improve any active learning algorithm by an optimal random exploration. Experimental results show a statistically-significant and appreciable improvement in the performance of our new approach over the existing active feedback methods. |
---|---|
ISSN: | 2073-431X 2073-431X |
DOI: | 10.3390/computers5010001 |