Improving Equine Intramedullary Nail Osteosynthesis via Fracture Adjacent Polymer Reinforcement

Introduction: Osteosynthesis of the equine femur is still a challenge for veterinary medicine. Even though intramedullary fracture fixation is possible nowadays, the varying geometry of the medullary cavity along the bone axis is a critical factor. Limited contact area between implant and bone can c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current directions in biomedical engineering 2022-09, Vol.8 (2), p.129-132
Hauptverfasser: Lang, Jan J., Baylacher, Veronika, Micheler, Carina M., Wilhelm, Nikolas J., Hinterwimmer, Florian, Schwaiger, Benedikt, Barnewitz, Dirk, Eisenhart-Rothe, Rüdiger von, Grosse, Christian U., Burgkart, Rainer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction: Osteosynthesis of the equine femur is still a challenge for veterinary medicine. Even though intramedullary fracture fixation is possible nowadays, the varying geometry of the medullary cavity along the bone axis is a critical factor. Limited contact area between implant and bone can cause insufficient primary stability. In this study, it was investigated whether the osteosynthesis stability can be improved with a form-adaptive reinforcement for the diaphyseal part of the proximal fragment. Material and Methods: Eight equine femora were fitted with intramedullary nail osteosynthesis and analyzed by 4-point bending. Virtual position planning of the ex-vivo implantation using CT-data increased comparability. For five femora the proximal fragment was reinforced with a flexible polymer mixture. Longterm stability was tested via cyclic loading. Bending stiffness and its development due to cyclic loading was evaluated before and after reinforcement procedure. Finally, load-to-failure was tested in the same setup. Results and Discussion: The application of the polymer reinforcement increased the maximum torque in the load-tofailure measurement by 26%. Bending stiffness was not affected in the measured loading range by the reinforcement. Cyclic loading increased bending stiffness for a conditioned state but showed to be reversible for the most part. Conclusion: The fracture adjacent reinforcement showed to be beneficial to the osteosynthesis stability, but further investigation is necessary for surgical application.
ISSN:2364-5504
2364-5504
DOI:10.1515/cdbme-2022-1034