Discovery of orally bioavailable SARS-CoV-2 papain-like protease inhibitor as a potential treatment for COVID-19

The RNA-dependent RNA polymerase (RdRp), 3C-like protease (3CL pro ), and papain-like protease (PL pro ) are pivotal components in the viral life cycle of SARS-CoV-2, presenting as promising therapeutic targets. Currently, all FDA-approved antiviral drugs against SARS-CoV-2 are RdRp or 3CL pro inhib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-11, Vol.15 (1), p.10169-16, Article 10169
Hauptverfasser: Lu, Yongzhi, Yang, Qi, Ran, Ting, Zhang, Guihua, Li, Wenqi, Zhou, Peiqi, Tang, Jielin, Dai, Minxian, Zhong, Jinpeng, Chen, Hua, He, Pan, Zhou, Anqi, Xue, Bao, Chen, Jiayi, Zhang, Jiyun, Yang, Sidi, Wu, Kunzhong, Wu, Xinyu, Tang, Miru, Zhang, Wei K., Guo, Deyin, Chen, Xinwen, Chen, Hongming, Shang, Jinsai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The RNA-dependent RNA polymerase (RdRp), 3C-like protease (3CL pro ), and papain-like protease (PL pro ) are pivotal components in the viral life cycle of SARS-CoV-2, presenting as promising therapeutic targets. Currently, all FDA-approved antiviral drugs against SARS-CoV-2 are RdRp or 3CL pro inhibitors. However, the mutations causing drug resistance have been observed in RdRp and 3CL pro from SARS-CoV-2, which makes it necessary to develop antivirals with novel mechanisms. Through the application of a structure-based drug design (SBDD) approach, we discover a series of novel potent non-covalent PL pro inhibitors with remarkable in vitro potency and in vivo PK properties. The co-crystal structures of PL pro with lead compounds reveal that the residues D164 and Q269 around the S2 site are critical for improving the inhibitor’s potency. The lead compound GZNL-P36 not only inhibits SARS-CoV-2 and its variants at the cellular level with EC 50 ranging from 58.2 nM to 306.2 nM, but also inhibits HCoV-NL63 and HCoV-229E with EC 50 of 81.6 nM and 2.66 μM, respectively. Oral administration of the GZNL-P36 results in significantly improved survival and notable reductions in lung viral loads and lesions in SARS-CoV-2 infection mouse model, consistent with RNA-seq data analysis. Our results indicate that PL pro inhibitors represent a promising SARS-CoV-2 therapy. In this work, the authors present novel PLpro inhibitors, with lead compound GZNL-P36 showing potent activity against SARS-CoV-2 variants, improving survival and reducing lung viral loads in a mouse model, offering promise for COVID−19 therapies.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-54462-0