Potential of heavy goods vehicle countermeasures to reduce the number of fatalities in crashes with vulnerable road users in Sweden

Heavy Goods Vehicles (HGVs) are involved in a large share of all serious and fatal collisions. Among these, about 30% are collisions involving Vulnerable Road Users (VRUs). The aim of the present study was to evaluate the potential of Heavy Goods Vehicle countermeasures to prevent fatalities with vu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Traffic Safety Research 2024-09, Vol.6, p.e000053
Hauptverfasser: Dukic Willstrand, Tania, Holmquist, Kristian, Fredriksson, Rikard, Rizzi, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heavy Goods Vehicles (HGVs) are involved in a large share of all serious and fatal collisions. Among these, about 30% are collisions involving Vulnerable Road Users (VRUs). The aim of the present study was to evaluate the potential of Heavy Goods Vehicle countermeasures to prevent fatalities with vulnerable road users in Sweden. Both the General Safety Regulation (GSR) and coming Euro NCAP test program were taken into account. Furthermore, elaboration on existing passive HGV safety systems were used to investigate any additive benefit. The Swedish Transport Administration carry out in-depth studies of all road fatalities. All in-depth studies for the period 2015–2020 were analysed retrospectively by a consensus group of three analysts, to assess the effectiveness of 22 active and passive safety systems. For each technology, target populations and boundary conditions were defined in order to facilitate the assessment. In total, 63 fatal crashes were found, compiled of 28 pedestrians, 13 bicyclists and 22 Powered Two Wheelers (PTWs, i.e. motorcyclists and moped riders). Overall, it was found that active and passive safety technologies could prevent up to 59% (37/63) of the included fatalities. For pedestrians, the potential of improved HGV driver vision, both with a surround view system and an improved direct vision, would have the larger potential to save lives. For bicyclists where the turn-right scenario is overrepresented, the implementation of Advanced Emergency Braking in junctions and Blind Spot Information Systems had the highest potential to save lives. For passive safety systems, HGV wheel protection had a potential to save many bicyclists by preventing them from being run over. Crash scenarios involving a PTW are the most challenging to address with HGV safety systems, mostly due to high PTW speed. Nevertheless, wheel protection on the HGV could save the lives of PTW drivers, by preventing them from being overrun. The present study showed that the included active and passive safety technologies for Heavy Goods Vehicles could prevent 59% of fatalities among vulnerable road users in Sweden. The fatalities not targeted by the HGV safety technologies included in the study would need other countermeasures such as connected safety technology (e.g. V2V or V2I), infrastructure, or education.
ISSN:2004-3082
2004-3082
DOI:10.55329/dpjc9540