Low-density lipoprotein nanomedicines: mechanisms of targeting, biology, and theranostic potential

Native nanostructured lipoproteins such as low- and high-density lipoproteins (LDL and HDL) are powerful tools for the targeted delivery of drugs and imaging agents. While the cellular recognition of well-known HDL-based carriers occurs via interactions with an HDL receptor, the selective delivery a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug delivery 2021-01, Vol.28 (1), p.408-421
Hauptverfasser: Di, Lin, Maiseyeu, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Native nanostructured lipoproteins such as low- and high-density lipoproteins (LDL and HDL) are powerful tools for the targeted delivery of drugs and imaging agents. While the cellular recognition of well-known HDL-based carriers occurs via interactions with an HDL receptor, the selective delivery and uptake of LDL particles by target cells are more complex. The most well-known mode of LDL-based delivery is via the interaction between apolipoprotein B (Apo-B) - the main protein of LDL - and the low-density lipoprotein receptor (LDLR). LDLR is expressed in the liver, adipocytes, and macrophages, and thus selectively delivers LDL carriers to these cells and tissues. Moreover, the elevated expression of LDLR in tumor cells indicates a role for LDL in the targeted delivery of chemotherapy drugs. In addition, chronic inflammation associated with hypercholesterolemia (i.e., high levels of endogenous LDL) can be abated by LDL carriers, which outcompete the deleterious oxidized LDL for uptake by macrophages. In this case, synthetic LDL nanocarriers act as 'eat-me' signals and exploit mechanisms of native LDL uptake for targeted drug delivery and imaging. Lastly, recent studies have shown that the delivery of LDL-based nanocarriers to macrophages via fluid-phase pinocytosis is a promising tool for atherosclerosis imaging. Hence, the present review summarizes the use of natural and synthetic LDL-based carriers for drug delivery and imaging and discusses various mechanisms of targeting.
ISSN:1071-7544
1521-0464
DOI:10.1080/10717544.2021.1886199