Highly efficient mode-locked and Q-switched Er3+-doped fiber lasers using a gold nanorod saturable absorber
Mode-locked and Q-switched pulsed fiber laser sources with wavelengths of 1.55 μm are widely used in various fields. Gold nanorods (GNRs) have been applied in biomedicine and optics owing to their biocompatibility, easy fabrication, and unique optical properties. This paper presents the analysis of...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2021-10, Vol.11 (1), p.20079-20079, Article 20079 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mode-locked and Q-switched pulsed fiber laser sources with wavelengths of 1.55 μm are widely used in various fields. Gold nanorods (GNRs) have been applied in biomedicine and optics owing to their biocompatibility, easy fabrication, and unique optical properties. This paper presents the analysis of a saturable absorber based on a colloidal gold nanorod (GNR) thin film for dual-function passively mode-locked and Q-switched 1.55-μm fiber lasers. The colloidal GNR thin film possesses superior properties such as a wide operating wavelength range, large nonlinear absorption coefficient, and a picosecond-order recovery time. Its modulation depth and saturation intensity at 1.55 μm are 7.8% and 6.55 MW/cm
2
, respectively. Passive mode-locked or Q-switched laser operation is achieved by changing the number of GNR thin-film layers. The advantages of these high-quality GNRs in mode-locked and Q-switched fiber lasers with record-high slope efficiency are verified by conducting comprehensive material and laser dynamic analyses. The self-starting mode-locked fiber laser with an efficiency as high as 24.91% and passively Q-switched fiber laser with the maximum energy of 0.403 μJ are successfully demonstrated. This paper presents the novel demonstration of reconfigurable mode-locked and Q-switched all-fiber lasers by incorporating colloidal GNR thin films. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-99676-0 |