Dissipative criteria for Takagi–Sugeno fuzzy Markovian jumping neural networks with impulsive perturbations using delay partitioning approach

In this work, we investigate the result of dissipative analysis for Takagi–Sugeno fuzzy Markovian jumping neural networks with impulsive perturbations via delay partition approach. By using the Lyapunov–Krasovskii functional and delay partition approach, we derive a set of delay-dependent sufficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2019-04, Vol.2019 (1), p.1-26, Article 140
Hauptverfasser: Nirmala, V. J., Saravanakumar, T., Zhu, Quanxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we investigate the result of dissipative analysis for Takagi–Sugeno fuzzy Markovian jumping neural networks with impulsive perturbations via delay partition approach. By using the Lyapunov–Krasovskii functional and delay partition approach, we derive a set of delay-dependent sufficient criteria for obtaining the required results. Furthermore, we restate the obtained sufficient conditions in the form of linear matrix inequalities (LMIs), which can be checked by the standard MATLAB LMI tool box. The main advantage of this work is reduced conservatism, which is mainly based on the delay partition approach. Finally, we provide numerical examples with simulations to demonstrate the applicability of the proposed method.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-019-2085-5