Nuclear imaging-guided PD-L1 blockade therapy increases effectiveness of cancer immunotherapy

ObjectivesStrategies to improve the responsiveness of programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) checkpoint blockade therapy remain an essential topic in cancer immunotherapy. In this study, we developed a new radiolabeled nanobody-based imaging probe 99mTc-MY1523 targeting PD-L1 fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal for immunotherapy of cancer 2020-11, Vol.8 (2), p.e001156
Hauptverfasser: Gao, Hannan, Wu, Yue, Shi, Jiyun, Zhang, Xin, Liu, Tianyu, Hu, Biao, Jia, Bing, Wan, Yakun, Liu, Zhaofei, Wang, Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ObjectivesStrategies to improve the responsiveness of programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) checkpoint blockade therapy remain an essential topic in cancer immunotherapy. In this study, we developed a new radiolabeled nanobody-based imaging probe 99mTc-MY1523 targeting PD-L1 for the enhanced therapeutic efficacy of PD-L1 blockade immunotherapy by the guidance of 99mTc-MY1523 SPECT/CT imaging.MethodsThe binding affinity and specificity of nanobody MY1523 were measured in vitro. MY1523 was radiolabeled with 99mTc by a site-specific transpeptidation of Sortase-A, and the biodistribution and single photon emission CT (SPECT)/CT were performed in mice bearing different tumors. We used interferon-γ (IFN-γ) as an intervention means to establish animal models with different levels of PD-L1 expression, then investigated the ability of 99mTc-MY1523 SPECT/CT for the in vivo non-invasive measurement of PD-L1 expression in tumors. Finally, the PD-L1 blockade immunotherapies guided by 99mTc-MY1523 SPECT/CT were carried out in MC-38, A20, and 4T1 tumor-bearing mouse models, followed by the testing of tumor infiltration T cells.ResultsMY1523 exhibited a high binding affinity and specificity to PD-L1 and had no competitive binding with the therapeutic antibody. 99mTc-MY1523 was prepared with high specific activity and radiochemical purity. It was found that tumor PD-L1 expression was dynamically upregulated by IFN-γ intervention in MC-38, A20, and 4T1 tumor-bearing mouse models, as indicated by 99mTc-MY1523 SPECT/CT. The PD-L1 blockade therapy initiated during the therapeutic time window determined by 99mTc-MY1523 SPECT/CT imaging significantly enhanced the therapeutic efficacy in all animal models, while the tumor growth was effectively suppressed, and the survival time of mice was evidently prolonged. A correlation between dynamically upregulated PD-L1 expression and improved PD-L1 blockade therapy effectiveness was revealed, and the markedly increased infiltration of effector T cells into tumors was verified after the imaging-guided therapy.ConclusionOur results demonstrated that 99mTc-MY1523 SPECT/CT allowed a real-time, quantitative and dynamic mapping of PD-L1 expression in vivo, and the imaging-guided PD-L1 blockade immunotherapy significantly enhanced the therapeutic efficacy. This strategy merits translation into clinical practice for the better management of combination therapies with radiotherapy or chemotherapy.
ISSN:2051-1426
2051-1426
DOI:10.1136/jitc-2020-001156