Improving the TSAB algorithm through parallel computing

In this paper, a parallel multi-path variant of the well-known TSAB algorithm for the job shop scheduling problem is proposed. Coarse-grained parallelization method is employed, which allows for great scalability of the algorithm with accordance to Gustafon’s law. The resulting P-TSAB algorithm is t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of control sciences 2020-01, Vol.30 (3), p.411-435
Hauptverfasser: Rudy, Jarosław, Pempera, Jarosław, Smutnicki, Czesław
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a parallel multi-path variant of the well-known TSAB algorithm for the job shop scheduling problem is proposed. Coarse-grained parallelization method is employed, which allows for great scalability of the algorithm with accordance to Gustafon’s law. The resulting P-TSAB algorithm is tested using 162 well-known literature benchmarks. Results indicate that P-TSAB algorithm with a running time of one minute on a modern PC provides solutions comparable to the ones provided by the newest literature approaches to the job shop scheduling problem. Moreover, on average P-TSAB achieves two times smaller percentage relative deviation from the best known solutions than the standard variant of TSAB. The use of parallelization also relieves the user from having to fine-tune the algorithm. The P-TSAB algorithm can thus be used as module in real-life production planning systems or as a local search procedure in other algorithms. It can also provide the upper bound of minimal cycle time for certain problems of cyclic scheduling.
ISSN:1230-2384
2300-2611
DOI:10.24425/acs.2020.134672