Sensorless Control of Surface-Mount Permanent-Magnet Synchronous Motors Based on an Adaptive Super-Twisting Sliding Mode Observer
The Sliding Mode Observer (SMO) is widely used for the sensorless control of Permanent-Magnet Synchronous Motors (PMSMs) due to its simple structure and strong parameter robustness. However, traditional SMOs have a limited speed range and suffer from chattering issues, which affect the accuracy of r...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2024-07, Vol.12 (13), p.2029 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Sliding Mode Observer (SMO) is widely used for the sensorless control of Permanent-Magnet Synchronous Motors (PMSMs) due to its simple structure and strong parameter robustness. However, traditional SMOs have a limited speed range and suffer from chattering issues, which affect the accuracy of rotor position estimation. To address these problems, this paper proposes an Adaptive Super-Twisting SMO (AST-SMO) method. First, a fast super-twisting function is designed to resolve the step problem that occurs at the zero-crossing of the traditional sign function. Next, an adaptive-tracking high-order Sliding Mode Observer is constructed to extend the speed range of the SMO. The stability of the system is proven using the Lyapunov theorem. Finally, a sensorless control system for PMSMs is implemented and validated in MATLAB/SIMULINK. The results indicate that, compared to the traditional SMO, the AST-SMO reduces the back EMF THD from 20.03% to 14.2%. Additionally, the rotor estimation error across all speed ranges is less than 0.01. Therefore, AST-SMO offers a higher tracking accuracy, a wider speed range, and effectively suppresses sliding mode chattering and harmonic interference. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math12132029 |