Mode-Locked Fiber Laser Sensors with Orthogonally Polarized Pulses Circulating in the Cavity

Intracavity phase interferometry is a powerful phase sensing technique using two correlated, counter-propagating frequency combs (pulse trains) in mode-locked lasers. Generating dual frequency combs of the same repetition rate in fiber lasers is a new field with hitherto unanticipated challenges. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-02, Vol.23 (5), p.2531
Hauptverfasser: Afkhamiardakani, Hanieh, Diels, Jean-Claude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intracavity phase interferometry is a powerful phase sensing technique using two correlated, counter-propagating frequency combs (pulse trains) in mode-locked lasers. Generating dual frequency combs of the same repetition rate in fiber lasers is a new field with hitherto unanticipated challenges. The large intensity in the fiber core, coupled with the nonlinear index of glass, result in a cumulative nonlinear index on axis that dwarfs the signal to be measured. The large saturable gain changes in an unpredictable way the repetition rate of the laser impeding the creation of frequency combs with identical repetition rate. The huge amount of phase coupling between pulses crossing at the saturable absorber eliminates the small signal response (deadband). Although there have been prior observation of gyroscopic response in mode-locked ring lasers, to our knowledge this is the first time that orthogonally polarized pulses were used to successfully eliminate the deadband and obtain a beat note.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23052531