Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations
The quality of simulation results significantly depends on the accuracy of the material model and parameters. In high strain rate forming processes such as, e.g., electromagnetic forming or adiabatic blanking, two superposing and opposing effects influence the flow stress of the material: strain rat...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2022-02, Vol.12 (5), p.2299 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The quality of simulation results significantly depends on the accuracy of the material model and parameters. In high strain rate forming processes such as, e.g., electromagnetic forming or adiabatic blanking, two superposing and opposing effects influence the flow stress of the material: strain rate hardening and thermal softening due to adiabatic heating. The presented work contributes to understanding these influences better by quantifying the adiabatic heating of the workpiece during deformation and failure under high-speed loading. For this purpose, uniaxial tensile tests at different high strain rates are analyzed experimentally and numerically. A special focus of the analysis of the tensile test was put on identifying a characteristic time- and position-dependent strain rate. In the experiments, in addition to the measurement of the force and elongation, the temperature in the fracture region is recorded using a thermal camera and a pyrometer for higher strain rates. Simulations are carried out in LS-Dyna using the GISSMO model as a damage and failure model. Both experimental and simulated results showed good agreement regarding the time-dependent force-displacement curve and the maximum occurring temperature. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app12052299 |