Neural Radiance Fields for Fisheye Driving Scenes Using Edge-Aware Integrated Depth Supervision
Neural radiance fields (NeRF) have become an effective method for encoding scenes into neural representations, allowing for the synthesis of photorealistic views of unseen views from given input images. However, the applicability of traditional NeRF is significantly limited by its assumption that im...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2024-10, Vol.24 (21), p.6790 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neural radiance fields (NeRF) have become an effective method for encoding scenes into neural representations, allowing for the synthesis of photorealistic views of unseen views from given input images. However, the applicability of traditional NeRF is significantly limited by its assumption that images are captured for object-centric scenes with a pinhole camera. Expanding these boundaries, we focus on driving scenarios using a fisheye camera, which offers the advantage of capturing visual information from a wide field of view. To address the challenges due to the unbounded and distorted characteristics of fisheye images, we propose an edge-aware integration loss function. This approach leverages sparse LiDAR projections and dense depth maps estimated from a learning-based depth model. The proposed algorithm assigns larger weights to neighboring points that have depth values similar to the sensor data. Experiments were conducted on the KITTI-360 and JBNU-Depth360 datasets, which are public and real-world datasets of driving scenarios using fisheye cameras. Experimental results demonstrated that the proposed method is effective in synthesizing novel view images, outperforming existing approaches. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24216790 |