Comprehensive circular RNA profiling in various sheep tissues

Despite the scientific relevance of circular RNAs (circRNAs), the study of these RNAs in non-model organisms, especially in sheep, is still in its infancy. On the other hand, while some studies have focused on sheep circRNA identification in a limited number of tissues, there is a lack of comprehens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-10, Vol.14 (1), p.26238-17, Article 26238
Hauptverfasser: Bakhtiarizade, Mohammad Reza, Heidari, Maryam, Ghanatghestani, Amir Hossein Mohammadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite the scientific relevance of circular RNAs (circRNAs), the study of these RNAs in non-model organisms, especially in sheep, is still in its infancy. On the other hand, while some studies have focused on sheep circRNA identification in a limited number of tissues, there is a lack of comprehensive analysis that profile circRNA expression patterns across the tissues not yet investigated. In this study, 61 public RNA sequencing datasets from 12 different tissues were uniformly analyzed to identify circRNAs, profile their expression and investigate their various characteristics. We reported for the first time a circRNA expression landscape with functional annotation in sheep tissues not yet investigated including hippocampus, BonMarrowMacrophage, left-ventricle, thymus, ileum, reticulum and 23-day-embryo. A stringent computational pipeline was employed and 8919 exon-derived circRNAs with high confidence were identified, including 88 novel circRNAs. Tissue-specificity analysis revealed that 3059 circRNAs were tissue-specific, which were also more specific to the tissues than linear RNAs. The highest number of tissue-specific circRNAs was found in kidney, hippocampus and thymus, respectively. Co-expression analysis revealed that expression of circRNAs may not be affected by their host genes. While most of the host genes produced more than one isoform, only one isoform had dominant expression across the tissues. The host genes of the tissue-specific circRNAs were significantly enriched in biological/pathways terms linked to the important functions of their corresponding tissues, suggesting potential roles of circRNAs in modulating physiological activity of those tissues. Interestingly, functional terms related to the regulation and various signaling pathways were significantly enriched in all tissues, suggesting some common regulatory mechanisms of circRNAs to modulate the physiological functions of tissues. Finding of the present study provide a valuable resource for depicting the complexity of circRNAs expression across tissues of sheep, which can be useful for the field of sheep genomic and veterinary research.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-76940-7