Numerical Study on the Effects of Partial Oxidation Fuel Reforming (POFR) on the Performance of a Natural Gas Engine

Due to the issues of low flame speed and high CH4 emissions for a natural gas engine, investigations into the partial oxidation fuel reforming (POFR) method used in natural gas engines to blend H2 have become increasingly valuable. In this paper, the combustion process, engine performance, and emiss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-12, Vol.16 (23), p.7909
Hauptverfasser: Wang, Mingda, Zhou, Rui, Guan, Min, Zheng, Jian, Yi, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the issues of low flame speed and high CH4 emissions for a natural gas engine, investigations into the partial oxidation fuel reforming (POFR) method used in natural gas engines to blend H2 have become increasingly valuable. In this paper, the combustion process, engine performance, and emissions of a natural gas engine with fuel-reforming gases blended together have been numerically studied. The results show that a higher fuel-reforming ratio can effectively improve the engine combustion performance, especially at lean-burn conditions. Combustion with reformed gases can increase the thermal efficiency by almost 2% at the full-load condition, whereas fuel reforming significantly affects the natural gas engine’s power performance. Furthermore, CH4 and NOX emissions decrease significantly with increasing fuel-reforming ratio. In conclusion, fuel reforming for a natural gas engine has a promising future in reducing greenhouse gas emissions and improving economic performance.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16237909