Confidence Interval for Variance Function of a Compound Periodic Poisson Process with a Power Function Trend

This research is a follow-up research of Utama (2022) on asymptotic distribution of an estimator for variance function of a compound periodic Poisson with the power function trend. The objectives of this research are (i) to formulate a confidence interval for the variance function of a compound peri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JTAM (Jurnal Teori dan Aplikasi Matematika) (Online) 2023-07, Vol.7 (3), p.889-898
Hauptverfasser: Irawan, Ade, Mangku, I Wayan, Budiarti, Retno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research is a follow-up research of Utama (2022) on asymptotic distribution of an estimator for variance function of a compound periodic Poisson with the power function trend. The objectives of this research are (i) to formulate a confidence interval for the variance function of a compound periodic Poisson process with a power function trend and (ii) to prove the convergence to 1-α probability of the parameter included in the confidence interval. This research process begins with a review of the existing formulation of the variance function estimator and its asymptotic distribution. Next, the confidence interval for the variance function of the compound periodic Poisson process with a power function trend is formulated and the convergence to 1-α is determined. After obtaining the confidence interval, the research continued by conducting computer simulations to confirmed the results obtained analytically. The results obtained show that the confidence interval for the variance function of a compound periodic Poisson process with a power function trend converges to 1-α both analytically and numerically for different finite time intervals.
ISSN:2597-7512
2614-1175
DOI:10.31764/jtam.v7i3.14836