Bending Behavior Analysis of Box Beams with the Reinforcement of Composite Materials for Wind Turbine Blades
Wind turbine blades in excessive wind conditions present extreme deflection problems. For this reason, an analysis of the structural response of composite reinforced box beams is developed. For this purpose, reinforced box beams were fabricated to improve the bending strength in the flapwise directi...
Gespeichert in:
Veröffentlicht in: | Fibers 2023-12, Vol.11 (12), p.99 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wind turbine blades in excessive wind conditions present extreme deflection problems. For this reason, an analysis of the structural response of composite reinforced box beams is developed. For this purpose, reinforced box beams were fabricated to improve the bending strength in the flapwise direction of the wind turbine blades. The box beams were analyzed with three-dimensional models using the Finite Element Method (FEM) and validated with bending tests at four-points and two-points. The box beam meets the characteristics of lightness and mechanical strength. Experimental four-point bending results showed that reinforced cross-sections decrease displacements by 30.09% and increase their stiffness to 43.41% for a box beam without structural reinforcement. In addition, the two-point bending results showed a difference of 18.98% between the displacements of the beams with structural reinforcements. In the FEM analysis, a maximum error of 11.24% was obtained when correlating the maximum displacement value with the experimental results of the beams. |
---|---|
ISSN: | 2079-6439 2079-6439 |
DOI: | 10.3390/fib11120099 |