A Systematic Study of Two-Neutrino Double Electron Capture

In this paper, we update the phase-space factors for all two-neutrino double electron capture processes. The Dirac–Hartree–Fock–Slater self-consistent method is employed to describe the bound states of captured electrons, enabling a more realistic treatment of atomic screening and more precise bindi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Universe (Basel) 2024-02, Vol.10 (2), p.98
Hauptverfasser: Niţescu, Ovidiu, Ghinescu, Stefan, Stoica, Sabin, Šimkovic, Fedor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we update the phase-space factors for all two-neutrino double electron capture processes. The Dirac–Hartree–Fock–Slater self-consistent method is employed to describe the bound states of captured electrons, enabling a more realistic treatment of atomic screening and more precise binding energies of the captured electrons compared to previous investigations. Additionally, we consider all s-wave electrons available for capture, expanding beyond the K and L1 orbitals considered in prior studies. For light atoms, the increase associated with additional captures compensates for the decrease in decay rate caused by the more precise atomic screening. However, for medium and heavy atoms, an increase in the decay rate, up to 10% for the heaviest atoms, is observed due to the combination of these two effects. In the systematic analysis, we also include capture fractions for the first few dominant partial captures. Our precise model enables a close examination of low Q-value double electron capture in 152Gd, 164Er, and 242Cm, where partial KK captures are energetically forbidden. Finally, with the updated phase-space values, we recalculate the effective nuclear matrix elements and compare their spread with those associated with 2νβ−β− decay.
ISSN:2218-1997
2218-1997
DOI:10.3390/universe10020098