Multimodal Contrastive Learning for Remote Sensing Image Feature Extraction Based on Relaxed Positive Samples

Traditional multimodal contrastive learning brings text and its corresponding image closer together as a positive pair, where the text typically consists of fixed sentence structures or specific descriptive statements, and the image features are generally global features (with some fine-grained work...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.24 (23), p.7719
Hauptverfasser: Zhang, Zhenshi, Li, Qiujun, Jing, Wenxuan, He, Guangjun, Zhu, Lili, Gao, Shijuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional multimodal contrastive learning brings text and its corresponding image closer together as a positive pair, where the text typically consists of fixed sentence structures or specific descriptive statements, and the image features are generally global features (with some fine-grained work using local features). Similar to unimodal self-supervised contrastive learning, this approach can be seen as enforcing a strict identity constraint in a multimodal context. However, due to the inherent complexity of remote sensing images, which cannot be easily described in a single sentence, and the fact that remote sensing images contain rich ancillary information beyond just object features, this strict identity constraint may be insufficient. To fully leverage the characteristics of remote sensing images, we propose a multimodal contrastive learning method for remote sensing image feature extraction, based on positive sample tripartite relaxation, where the model is relaxed in three aspects. The first aspect of relaxation involves both the text and image inputs. By introducing learnable parameters in the language and image branches, instead of relying on fixed sentence structures and fixed image features, the network can achieve a more flexible description of remote sensing images in text and extract ancillary information from the image features, thereby relaxing the input constraints. Second relaxation is achieved through multimodal alignment of various features. By aligning semantic information with the corresponding semantic regions in the images, the method allows for the relaxation of local image features under semantic constraints. This approach addresses the issue of selecting image patches in unimodal settings, where there is no semantic constraint. The proposed method for remote sensing image feature extraction has been validated on four datasets. On the PatternNet dataset, it achieved a 91.1% accuracy with just one-shot.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24237719