In Silico Searching for Alternative Lead Compounds to Treat Type 2 Diabetes through a QSAR and Molecular Dynamics Study

Free fatty acid receptor 1 (FFA1) stimulates insulin secretion in pancreatic β-cells. An advantage of therapies that target FFA1 is their reduced risk of hypoglycemia relative to common type 2 diabetes treatments. In this work, quantitative structure-activity relationship (QSAR) approach was used to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutics 2022-01, Vol.14 (2), p.232
Hauptverfasser: Cabrera, Nicolás, Cuesta, Sebastián A, Mora, José R, Calle, Luis, Márquez, Edgar A, Kaunas, Roland, Paz, José Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Free fatty acid receptor 1 (FFA1) stimulates insulin secretion in pancreatic β-cells. An advantage of therapies that target FFA1 is their reduced risk of hypoglycemia relative to common type 2 diabetes treatments. In this work, quantitative structure-activity relationship (QSAR) approach was used to construct models to identify possible FFA1 agonists by applying four different machine-learning algorithms. The best model (M2) meets the Tropsha's test requirements and has the statistics parameters R = 0.843, Q = 0.785, and Q = 0.855. Also, coverage of 100% of the test set based on the applicability domain analysis was obtained. Furthermore, a deep analysis based on the ADME predictions, molecular docking, and molecular dynamics simulations was performed. The lipophilicity and the residue interactions were used as relevant criteria for selecting a candidate from the screening of the DiaNat and DrugBank databases. Finally, the FDA-approved drugs bilastine, bromfenac, and fenofibric acid are suggested as potential and lead FFA1 agonists.
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics14020232