Optimization of Cutting Parameters for Trade-off Among Carbon Emissions, Surface Roughness, and Processing Time

As the manufacturing industry is facing increasingly serious environmental problems, because of which carbon tax policies are being implemented, choosing the optimum cutting parameters during the machining process is crucial for automobile panel dies in order to achieve synergistic minimization of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of mechanical engineering 2019-12, Vol.32 (1), p.1-18, Article 94
Hauptverfasser: Jiang, Zhipeng, Gao, Dong, Lu, Yong, Liu, Xianli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the manufacturing industry is facing increasingly serious environmental problems, because of which carbon tax policies are being implemented, choosing the optimum cutting parameters during the machining process is crucial for automobile panel dies in order to achieve synergistic minimization of the environment impact, product quality, and processing efficiency. This paper presents a processing task-based evaluation method to optimize the cutting parameters, considering the trade-off among carbon emissions, surface roughness, and processing time. Three objective models and their relationships with the cutting parameters were obtained through input–output, response surface, and theoretical analyses, respectively. Examples of cylindrical turning were applied to achieve a central composite design (CCD), and relative validation experiments were applied to evaluate the proposed method. The experiments were conducted on the CAK50135di lathe cutting of AISI 1045 steel, and NSGA-II was used to obtain the Pareto fronts of the three objectives. Based on the TOPSIS method, the Pareto solution set was ranked to find the optimal solution to evaluate and select the optimal cutting parameters. An S/N ratio analysis and contour plots were applied to analyze the influence of each decision variable on the optimization objective. Finally, the changing rules of a single factor for each objective were analyzed. The results demonstrate that the proposed method is effective in finding the trade-off among the three objectives and obtaining reasonable application ranges of the cutting parameters from Pareto fronts.
ISSN:1000-9345
2192-8258
DOI:10.1186/s10033-019-0408-9