W-GeoR: Weighted Geographical Routing for VANET's Health Monitoring Applications in Urban Traffic Networks
Natural disasters like earthquakes and tsunami could destroy the existing infrastructure-based communication system. IoT-based health monitoring is not possible in such scenarios. Therefore, there is a need for other resilient health monitoring frameworks to provide consistent health monitoring with...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.38850-38869 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Natural disasters like earthquakes and tsunami could destroy the existing infrastructure-based communication system. IoT-based health monitoring is not possible in such scenarios. Therefore, there is a need for other resilient health monitoring frameworks to provide consistent health monitoring without depending on existing communication platforms. Wireless Body Sensor Network (WBSN) based health monitoring utilizing Vehicular Ad-hoc Network (VANET) as a communication medium could be a handy solution for transmitting patients' health information to the nearest ambulance or hospital in emergencies or disaster-prone areas. Casualty rates can be reduced significantly by providing emergency treatment to injured patients within a stipulated time. VANET's health monitoring applications are time-critical; therefore, designing a stable and efficient routing algorithm is a significant research challenge. Over the years, the researchers proposed many routing solutions to minimize the delay for critical applications. This paper proposed a Weighted Geographical Routing (W-GeoR) for VANET's health monitoring applications focusing on next-hop node selection for faster vital signs dissemination to facilitate post-disaster health monitoring in urban traffic environments. The proposed protocol utilized traffic-aware information including traffic mobility, inter-vehicle distances, speed differences, communication link expiration time, channel quality, and proximity factors for optimal next-hop node selection procedure. W-GeoR is tested on a post-disaster scenario created with SUMO-0.32 and NS-3.23 platforms. Simulated results confirm that W-GeoR performs better than the existing state-of-the-art protocols. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3092426 |