Packing Plane Perfect Matchings into a Point Set
Given a set $P$ of $n$ points in the plane, where $n$ is even, we consider the following question: How many plane perfect matchings can be packed into $P$? For points in general position we prove the lower bound of ⌊log2$n$⌋$-1$. For some special configurations of point sets, we give the exact answe...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics and theoretical computer science 2015-09, Vol.17 no.2 (Graph Theory), p.119-142 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a set $P$ of $n$ points in the plane, where $n$ is even, we consider the following question: How many plane perfect matchings can be packed into $P$? For points in general position we prove the lower bound of ⌊log2$n$⌋$-1$. For some special configurations of point sets, we give the exact answer. We also consider some restricted variants of this problem. |
---|---|
ISSN: | 1365-8050 1462-7264 1365-8050 |
DOI: | 10.46298/dmtcs.2132 |