A Parametric Bootstrap Approach for a One-Way Error Component Regression Model with Measurement Errors
In this paper, a one-way error component regression model with measurement errors is considered. The unknown parameter vector is estimated by using the bias-corrected method, and its corresponding asymptotic properties are also developed. For the hypothesis testing problem of the vector of the coeff...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2023-10, Vol.11 (19), p.4165 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a one-way error component regression model with measurement errors is considered. The unknown parameter vector is estimated by using the bias-corrected method, and its corresponding asymptotic properties are also developed. For the hypothesis testing problem of the vector of the coefficient parameter in the model, a parametric bootstrap (PB) method is proposed. Under various sample sizes and parameter configurations, the effectiveness of our proposed PB test method is discussed by using some numerical simulations and a real data analysis. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11194165 |