Extensive palaeo-surfaces beneath the Evans–Rutford region of the West Antarctic Ice Sheet control modern and past ice flow

The subglacial landscape of Antarctica records and influences the behaviour of its overlying ice sheet. However, in many places, the evolution of the landscape and its control on ice sheet behaviour have not been investigated in detail. Using recently released radio-echo sounding data, we investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The cryosphere 2024-05, Vol.18 (5), p.2277-2296
Hauptverfasser: Carter, Charlotte M, Bentley, Michael J, Jamieson, Stewart S. R, Paxman, Guy J. G, Jordan, Tom A, Bodart, Julien A, Ross, Neil, Napoleoni, Felipe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The subglacial landscape of Antarctica records and influences the behaviour of its overlying ice sheet. However, in many places, the evolution of the landscape and its control on ice sheet behaviour have not been investigated in detail. Using recently released radio-echo sounding data, we investigate the subglacial landscape of the Evans–Rutford region of West Antarctica. Following quantitative analysis of the landscape morphology under ice-loaded and ice-unloaded conditions, we identify 10 flat surfaces distributed across the region. Across these 10 surfaces, we identify two distinct populations based on clustering of elevations, which potentially represent remnants of regionally coherent pre-glacial surfaces underlying the West Antarctic Ice Sheet (WAIS). The surfaces are bounded by deeply incised glacial troughs, some of which have potential tectonic controls. We assess two hypotheses for the evolution of the regional landscape: (1) passive-margin evolution associated with the break-up of the Gondwana supercontinent or (2) an extensive planation surface that may have been uplifted in association with either the West Antarctic Rift System or cessation of subduction at the base of the Antarctic Peninsula. We suggest that passive-margin evolution is the most likely of these two mechanisms, with the erosion of glacial troughs adjacent to, and incising, the flat surfaces likely having coincided with the growth of the WAIS. These flat surfaces also demonstrate similarities to other identified surfaces, indicating that a similar formational process may have been acting more widely around the Weddell Sea embayment. The subsequent fluctuations of ice flow, basal thermal regime, and erosion patterns of the WAIS are therefore controlled by the regional tectonic structures.
ISSN:1994-0424
1994-0416
1994-0424
1994-0416
DOI:10.5194/tc-18-2277-2024