An Avant-Garde Construction for Subclasses of Analytic Bi-Univalent Functions
The zero-truncated Poisson distribution is an important and appropriate model for many real-world applications. Here, we exploit the zero-truncated Poisson distribution probabilities to construct a new subclass of analytic bi-univalent functions involving Gegenbauer polynomials. For functions in the...
Gespeichert in:
Veröffentlicht in: | Axioms 2022-06, Vol.11 (6), p.267 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The zero-truncated Poisson distribution is an important and appropriate model for many real-world applications. Here, we exploit the zero-truncated Poisson distribution probabilities to construct a new subclass of analytic bi-univalent functions involving Gegenbauer polynomials. For functions in the constructed class, we explore estimates of Taylor–Maclaurin coefficients a2 and a3, and next, we solve the Fekete–Szegő functional problem. A number of new interesting results are presented to follow upon specializing the parameters involved in our main results. |
---|---|
ISSN: | 2075-1680 2075-1680 |
DOI: | 10.3390/axioms11060267 |