An Avant-Garde Construction for Subclasses of Analytic Bi-Univalent Functions

The zero-truncated Poisson distribution is an important and appropriate model for many real-world applications. Here, we exploit the zero-truncated Poisson distribution probabilities to construct a new subclass of analytic bi-univalent functions involving Gegenbauer polynomials. For functions in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2022-06, Vol.11 (6), p.267
Hauptverfasser: Yousef, Feras, Amourah, Ala, Frasin, Basem Aref, Bulboacă, Teodor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The zero-truncated Poisson distribution is an important and appropriate model for many real-world applications. Here, we exploit the zero-truncated Poisson distribution probabilities to construct a new subclass of analytic bi-univalent functions involving Gegenbauer polynomials. For functions in the constructed class, we explore estimates of Taylor–Maclaurin coefficients a2 and a3, and next, we solve the Fekete–Szegő functional problem. A number of new interesting results are presented to follow upon specializing the parameters involved in our main results.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms11060267