Performance, Serum Biochemical and Immunological Parameters, and Digestive Enzyme and Intestinal Barrier-Related Gene Expression of Broiler Chickens Fed Fermented Fava Bean By-Products as a Substitute for Conventional Feed

Improving the nutritional quality of unconventional feed ingredients such as fava bean by-products can enhance their utilization by broiler chickens. Hence, the quality of fermented fava bean by-products (FFB), in addition to growth, nutrient digestibility, digestive enzyme, and intestinal barrier-r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in veterinary science 2021-07, Vol.8, p.696841-696841
Hauptverfasser: Omar, Anaam E., Al-Khalaifah, Hanan S., Ismail, Tamer Ahmed, Abd El-Aziz, Reda M., El-Mandrawy, Shefaa A. M., Shalaby, Shymaa I., Ibrahim, Doaa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Improving the nutritional quality of unconventional feed ingredients such as fava bean by-products can enhance their utilization by broiler chickens. Hence, the quality of fermented fava bean by-products (FFB), in addition to growth, nutrient digestibility, digestive enzyme, and intestinal barrier-related gene expression, and serum biochemical and immunological parameters were evaluated in response to different levels of FFB. A total of 500 1-day-old broiler chicks (46.00 ± 0.388 g) were allocated to five groups with 10 replicates each (100 chicks per treatment). The first group was fed a corn–soybean diet (control diet), and the other four groups were fed a diet containing 5, 15, 25, and 35% FFB for 38 days. Birds fed 25% FFB exhibited maximum body weight gain (increase by 12.5%, compared with the control group) and the most improved feed conversion ratio. Additionally, birds fed FFB at 15, 25, and 35% showed improved dry matter and crude protein digestibility. Moreover, birds fed FFB at 25 and 35% exhibited a decrease in ileal pH and an increase in fiber digestibility ( p < 0.05). Upregulation of digestive enzyme genes ( AMY2A, PNLIP , and CCK ) was observed in groups fed with FFB. The most prominent upregulation of genes encoding tight junction proteins (claudin-1, occludin, and junctional adhesion molecules) in the duodenum was observed in chicks fed 25 and 35% FFB (increase of 0.66-, 0.31-, and 1.06-fold and 0.74-, 0.44-, and 0.92-fold, respectively). Additionally, the highest expression level of enterocyte protective genes [glucagon-like peptide ( GLP-2 ), mucin-2 ( MUC-2 ), and fatty acid-binding protein ( FABP-6 )] was detected in duodenum of chicks fed high levels of FFB. Substitution of corn–soybean diet with FFB had an inhibitory effect on cecal pathogenic microbes ( Escherichia coli and Clostridium perfringens ) and increased beneficial microflora ( Lactobacilli and Bifidobacterium ), especially at high levels. Additionally, an increase was observed in IgM and lysozyme activity, with no effect on IgA in all groups fed FFB. All levels of FFB decreased cholesterol levels. Based on our results, we concluded that substitution of corn–soybean diet with FFB can improve the growth rate and nutrient digestibility of broiler chickens, enhance their intestinal barrier functions, and increase the number of beneficial microorganisms. Using FFB at 25% had a positive effect on the growth performance of broiler chickens, and it could be utilized in poultry fa
ISSN:2297-1769
2297-1769
DOI:10.3389/fvets.2021.696841