Parallel LSTM-Based Regional Integrated Energy System Multienergy Source-Load Information Interactive Energy Prediction

The multienergy interaction characteristic of regional integrated energy systems can greatly improve the efficiency of energy utilization. This paper proposes an energy prediction strategy for multienergy information interaction in regional integrated energy systems from the perspective of horizonta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2019, Vol.2019 (2019), p.1-13
Hauptverfasser: Wang, Hongxia, Ma, Hengrui, Zhang, Liming, Wang, Bo, Wan, Shaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The multienergy interaction characteristic of regional integrated energy systems can greatly improve the efficiency of energy utilization. This paper proposes an energy prediction strategy for multienergy information interaction in regional integrated energy systems from the perspective of horizontal interaction and vertical interaction. Firstly, the multienergy information coupling correlation of the regional integrated energy system is analyzed, and the horizontal interaction and vertical interaction mode are proposed. Then, based on the long short-term memory depth neural network time series prediction, parallel long short-term memory multitask learning model is established to achieve horizontal interaction among multienergy systems and based on user-driven behavioral data to achieve vertical interaction between source and load. Finally, uncertain resources composed of wind power, photovoltaic, and various loads on both sides of source and load integrated energy prediction are achieved. The simulation results of the measured data show that the interactive parallel prediction method proposed in this article can effectively improve the prediction effect of each subtask.
ISSN:1076-2787
1099-0526
DOI:10.1155/2019/7414318