KPDR : An Effective Method of Privacy Protection

To solve the problem of user privacy disclosure caused by attacks on anonymous areas in spatial generalization privacy protection methods, a K and P Dirichlet Retrieval (KPDR) method based on k-anonymity mechanism is proposed. First, the Dirichlet graph model is introduced, the same kind of informat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1)
Hauptverfasser: Shen, Zihao, Zhen, Wei, Li, Pengfei, Wang, Hui, Liu, Kun, Liu, Peiqian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To solve the problem of user privacy disclosure caused by attacks on anonymous areas in spatial generalization privacy protection methods, a K and P Dirichlet Retrieval (KPDR) method based on k-anonymity mechanism is proposed. First, the Dirichlet graph model is introduced, the same kind of information points is analyzed by using the characteristics of Dirichlet graph, and the anonymous set of users is generated and sent to LBS server. Second, the relationship matrix is generated, and the proximity relationship between the user position and the target information point is obtained by calculation. Then, the private information retrieval model is applied to ensure the privacy of users’ target information points. Finally, the experimental results show that the KPDR method not only satisfies the diversity of l3/4, but also increases the anonymous space, reduces the communication overhead, ensures the anonymous success rate of users, and effectively prevents the disclosure of user privacy.
ISSN:1076-2787
1099-0526
DOI:10.1155/2021/6674639