Risk Assessment of Urban Floods Based on a SWMM-MIKE21-Coupled Model Using GF-2 Data

Global climate change and rapid urbanization have caused increases in urban floods. Urban flood risk assessment is a vital method for preventing and controlling such disasters. This paper takes the central region of Cangzhou city in Hebei Province as an example. Detailed topographical information, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2021-11, Vol.13 (21), p.4381
Hauptverfasser: Zhao, Lidong, Zhang, Ting, Fu, Jun, Li, Jianzhu, Cao, Zhengxiong, Feng, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Global climate change and rapid urbanization have caused increases in urban floods. Urban flood risk assessment is a vital method for preventing and controlling such disasters. This paper takes the central region of Cangzhou city in Hebei Province as an example. Detailed topographical information, such as the buildings and roads in the study area, was extracted from GF-2 data. By coupling the two models, the SWMM and MIKE21, the spatial distribution of the inundation region, and the water depth in the study area under different return periods, were simulated in detail. The results showed that, for the different return periods, the inundation region was generally consistent. However, there was a large increase in the mean inundation depth within a 10-to-30-year return period, and the increase in the maximum inundation depth and inundation area remained steady. The comprehensive runoff coefficient in all of the scenarios exceeded 0.8, indicating that the drainage system in the study area is insufficient and has a higher flood risk. The flood risk of the study area was evaluated based on the damage curve, which was obtained from field investigations. The results demonstrate that the loss per unit area was less than CNY 250/m2 in each return period in the majority of the damaged areas. Additionally, the total loss was mainly influenced by the damaged area, but, in commercial areas, the total loss was highly sensitive to the inundation depth.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13214381