An investigation on hyper S-posets over ordered semihypergroups

In this paper, we define and study the hyper -posets over an ordered semihypergroup in detail. We introduce the hyper version of a pseudoorder in a hyper -poset, and give some related properties. In particular, we characterize the structure of factor hyper -posets by pseudoorders. Furthermore, we in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open mathematics (Warsaw, Poland) Poland), 2017-02, Vol.15 (1), p.37-56
Hauptverfasser: Tang, Jian, Davvaz, Bijan, Xie, Xiang-Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we define and study the hyper -posets over an ordered semihypergroup in detail. We introduce the hyper version of a pseudoorder in a hyper -poset, and give some related properties. In particular, we characterize the structure of factor hyper -posets by pseudoorders. Furthermore, we introduce the concepts of order-congruences and strong order-congruences on a hyper -poset , and obtain the relationship between strong order-congruences and pseudoorders on . We also characterize the (strong) order-congruences by the -chains, where is a (strong) congruence on . Moreover, we give a method of constructing order-congruences, and prove that every hyper -subposet of a hyper -poset is a congruence class of one order-congruence on if and only if is convex. In the sequel, we give some homomorphism theorems of hyper -posets, which are generalizations of similar results in -posets and ordered semigroups.
ISSN:2391-5455
2391-5455
DOI:10.1515/math-2017-0004