An investigation on hyper S-posets over ordered semihypergroups
In this paper, we define and study the hyper -posets over an ordered semihypergroup in detail. We introduce the hyper version of a pseudoorder in a hyper -poset, and give some related properties. In particular, we characterize the structure of factor hyper -posets by pseudoorders. Furthermore, we in...
Gespeichert in:
Veröffentlicht in: | Open mathematics (Warsaw, Poland) Poland), 2017-02, Vol.15 (1), p.37-56 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we define and study the hyper
-posets over an ordered semihypergroup in detail. We introduce the hyper version of a pseudoorder in a hyper
-poset, and give some related properties. In particular, we characterize the structure of factor hyper
-posets by pseudoorders. Furthermore, we introduce the concepts of order-congruences and strong order-congruences on a hyper
-poset
, and obtain the relationship between strong order-congruences and pseudoorders on
. We also characterize the (strong) order-congruences by the
-chains, where
is a (strong) congruence on
. Moreover, we give a method of constructing order-congruences, and prove that every hyper
-subposet
of a hyper
-poset
is a congruence class of one order-congruence on
if and only if
is convex. In the sequel, we give some homomorphism theorems of hyper
-posets, which are generalizations of similar results in
-posets and ordered semigroups. |
---|---|
ISSN: | 2391-5455 2391-5455 |
DOI: | 10.1515/math-2017-0004 |