Acute Effects of High-Definition Transcranial Direct Current Stimulation on Foot Muscle Strength, Passive Ankle Kinesthesia, and Static Balance: A Pilot Study

This study aimed to examine the effects of single-session anodal high-definition transcranial direct current stimulation (HD-tDCS) on the strength of intrinsic foot muscles, passive ankle kinesthesia, and static balance. In this double-blinded self-controlled study, 14 healthy younger adults were as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain sciences 2020-04, Vol.10 (4), p.246
Hauptverfasser: Xiao, Songlin, Wang, Baofeng, Zhang, Xini, Zhou, Junhong, Fu, Weijie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to examine the effects of single-session anodal high-definition transcranial direct current stimulation (HD-tDCS) on the strength of intrinsic foot muscles, passive ankle kinesthesia, and static balance. In this double-blinded self-controlled study, 14 healthy younger adults were asked to complete assessments of foot muscle strength, passive ankle kinesthesia, and static balance before and after a 20-minute session of either HD-tDCS or sham stimulation (i.e., control) at two visits separated by one week. Two-way repeated-measures analysis of variance was used to examine the effects of HD-tDCS on metatarsophalangeal joint flexor strength, toe flexor strength, the passive kinesthesia threshold of ankle joint, and the average sway velocity of the center of gravity. All participants completed all study procedures and no side effects nor risk events were reported. Blinding was shown to be successful, with an overall accuracy of 35.7% in the guess of stimulation type (p = 0.347). No main effects of intervention, time, or their interaction were observed for foot muscle strength ( > 0.05). The average percent change in first-toe flexor strength following anodal HD-tDCS was 12.8 ± 24.2%, with 11 out of 14 participants showing an increase in strength, while the change following sham stimulation was 0.7 ± 17.3%, with 8 out of 14 participants showing an increase in strength. A main effect of time on the passive kinesthesia threshold of ankle inversion, dorsiflexion, and anteroposterior and medial-lateral average sway velocity of the center of gravity in one-leg standing with eyes closed was observed; these outcomes were reduced from pre to post stimulation (p < 0.05). No significant differences were observed for other variables between the two stimulation types. The results of this pilot study suggested that single-session HD-tDCS may improve the flexor strength of the first toe, although no statistically significant differences were observed between the anodal HD-tDCS and sham procedure groups. Additionally, passive ankle kinesthesia and static standing balance performance were improved from pre to post stimulation, but no significant differences were observed between the HD-tDCS and sham procedure groups. This may be potentially due to ceiling effects in this healthy cohort of a small sample size. Nevertheless, these preliminary findings may provide critical knowledge of optimal stimulation parameters, effect size, and power estimation of HD-tDCS fo
ISSN:2076-3425
2076-3425
DOI:10.3390/brainsci10040246