The k-Metric Dimension of a Unicyclic Graph

Given a connected graph G=(V(G),E(G)), a set S⊆V(G) is said to be a k-metric generator for G if any pair of different vertices in V(G) is distinguished by at least k elements of S. A metric generator of minimum cardinality among all k-metric generators is called a k-metric basis and its cardinality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2021-11, Vol.9 (21), p.2789
1. Verfasser: Estrada-Moreno, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a connected graph G=(V(G),E(G)), a set S⊆V(G) is said to be a k-metric generator for G if any pair of different vertices in V(G) is distinguished by at least k elements of S. A metric generator of minimum cardinality among all k-metric generators is called a k-metric basis and its cardinality is the k-metric dimension of G. We initially present a linear programming problem that describes the problem of finding the k-metric dimension and a k-metric basis of a graph G. Then we conducted a study on the k-metric dimension of a unicyclic graph.
ISSN:2227-7390
2227-7390
DOI:10.3390/math9212789