Characterization of Soft S-Open Sets in Bi-Soft Topological Structure Concerning Crisp Points

In this article, a soft s-open set in soft bitopological structures is introduced. With the help of this newly defined soft s-open set, soft separation axioms are regenerated in soft bitopological structures with respect to crisp points. Soft continuity at some certain points, soft bases, soft subba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2020-12, Vol.8 (12), p.2100
Hauptverfasser: Mehmood, Arif, Al-Shomrani, Mohammed M., Zaighum, Muhammad Asad, Abdullah, Saleem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a soft s-open set in soft bitopological structures is introduced. With the help of this newly defined soft s-open set, soft separation axioms are regenerated in soft bitopological structures with respect to crisp points. Soft continuity at some certain points, soft bases, soft subbase, soft homeomorphism, soft first-countable and soft second-countable, soft connected, soft disconnected and soft locally connected spaces are defined with respect to crisp points under s-open sets in soft bitopological spaces. The product of two soft  axioms with respect crisp points with almost all possibilities in soft bitopological spaces relative to semiopen sets are introduced. In addition to this, soft (countability, base, subbase, finite intersection property, continuity) are addressed with respect to semiopen sets in soft bitopological spaces. Product of soft first and second coordinate spaces are addressed with respect to semiopen sets in soft bitopological spaces. The characterization of soft separation axioms with soft connectedness is addressed with respect to semiopen sets in soft bitopological spaces. In addition to this, the product of two soft topological spaces is (  space if each coordinate space is soft  space, product of two sot topological spaces is (S regular and C regular) space if each coordinate space is (S regular and C regular), the product of two soft topological spaces is connected if each coordinate space is soft connected and the product of two soft topological spaces is (first-countable, second-countable) if each coordinate space is (first countable, second-countable).
ISSN:2227-7390
2227-7390
DOI:10.3390/math8122100