Assessing Accuracy of Land Cover Change Maps Derived from Automated Digital Processing and Visual Interpretation in Tropical Forests in Indonesia
This study assessed the accuracy of land cover change (2000–2018) maps compiled from Landsat images with either automated digital processing or with visual interpretation for a tropical forest area in Indonesia. The accuracy assessment used a two-stage stratified random sampling involving a confusio...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-04, Vol.13 (8), p.1446 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study assessed the accuracy of land cover change (2000–2018) maps compiled from Landsat images with either automated digital processing or with visual interpretation for a tropical forest area in Indonesia. The accuracy assessment used a two-stage stratified random sampling involving a confusion matrix for assessing map accuracy and by estimating areas of land cover change classes and associated uncertainty. The reference data were high-resolution images from SPOT 6/7 and high-resolution images finer than 5 m obtained from Open Foris Collect Earth. Results showed that the map derived from automated digital processing had lower accuracy (overall accuracy 73–77%) compared to the map based on visual interpretation (overall accuracy 80–84%). The automated digital processing map error was in differentiating between native forest and plantation areas. While the visual interpretation map had a higher accuracy, it did not consistently differentiate between native forest and shrub areas. Future improvement of the digital map requires more accurate differentiation between forest and plantation to better support national forest monitoring systems for sustainable forest management. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13081446 |