Machine learning-driven optimization in powder manufacturing of Ni-Co based superalloy

The process parameters in powder manufacturing must be optimized to produce high-quality powders with desired sizes depending on the use. Machine learning-driven optimization was applied to determine promising gas atomization process parameters for the manufacture of Ni-Co based superalloy powders f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials & design 2021-01, Vol.198, p.109290, Article 109290
Hauptverfasser: Tamura, Ryo, Osada, Toshio, Minagawa, Kazumi, Kohata, Takuma, Hirosawa, Masashi, Tsuda, Koji, Kawagishi, Kyoko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The process parameters in powder manufacturing must be optimized to produce high-quality powders with desired sizes depending on the use. Machine learning-driven optimization was applied to determine promising gas atomization process parameters for the manufacture of Ni-Co based superalloy powders for turbine-disk applications. Using a Bayesian optimization without expert assistance, starting from just three sets of data, three optimization cycles were used to determine the gas atomization process parameters. In particular, we determined the melt temperature and gas pressure that could achieve a 77.85% yield (size:
ISSN:0264-1275
1873-4197
DOI:10.1016/j.matdes.2020.109290