Regular Schur labeled skew shape posets and their 0-Hecke modules
Assuming Stanley’s P-partitions conjecture holds, the regular Schur labeled skew shape posets are precisely the finite posets P with underlying set $\{1, 2, \ldots , |P|\}$ such that the P-partition generating function is symmetric and the set of linear extensions of P, denoted $\Sigma _L(P)$ , is a...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Sigma 2024-11, Vol.12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assuming Stanley’s P-partitions conjecture holds, the regular Schur labeled skew shape posets are precisely the finite posets P with underlying set
$\{1, 2, \ldots , |P|\}$
such that the P-partition generating function is symmetric and the set of linear extensions of P, denoted
$\Sigma _L(P)$
, is a left weak Bruhat interval in the symmetric group
$\mathfrak {S}_{|P|}$
. We describe the permutations in
$\Sigma _L(P)$
in terms of reading words of standard Young tableaux when P is a regular Schur labeled skew shape poset, and classify
$\Sigma _L(P)$
’s up to descent-preserving isomorphism as P ranges over regular Schur labeled skew shape posets. The results obtained are then applied to classify the
$0$
-Hecke modules
$\mathsf {M}_P$
associated with regular Schur labeled skew shape posets P up to isomorphism. Then we characterize regular Schur labeled skew shape posets as the finite posets P whose linear extensions form a dual plactic-closed subset of
$\mathfrak {S}_{|P|}$
. Using this characterization, we construct distinguished filtrations of
$\mathsf {M}_P$
with respect to the Schur basis when P is a regular Schur labeled skew shape poset. Further issues concerned with the classification and decomposition of the
$0$
-Hecke modules
$\mathsf {M}_P$
are also discussed. |
---|---|
ISSN: | 2050-5094 |
DOI: | 10.1017/fms.2024.116 |