Elastic Wave Monitoring of Cementitious Mixtures Including Internal Curing Mechanisms

The mitigation of autogenous shrinkage in cementitious materials by internal curing has been widely studied. By the inclusion of water reservoirs, in form of saturated lightweight aggregates or superabsorbent polymers, additional water is provided to the hydrating matrix. The onset of water release...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-04, Vol.21 (7), p.2463
Hauptverfasser: Lefever, Gerlinde, Snoeck, Didier, De Belie, Nele, Van Hemelrijck, Danny, Aggelis, Dimitrios G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mitigation of autogenous shrinkage in cementitious materials by internal curing has been widely studied. By the inclusion of water reservoirs, in form of saturated lightweight aggregates or superabsorbent polymers, additional water is provided to the hydrating matrix. The onset of water release is of high importance and determines the efficiency of the internal curing mechanism. However, the monitoring of it poses problems as it is a process that takes place in the microstructure. Using acoustic emission (AE) sensors, the internal curing process is monitored, revealing its initiation and intensity, as well as the duration. In addition, AE is able to capture the water evaporation from saturated specimens. By ultrasonic testing, differences in the hydration kinetics are observed imposed by the different methods of internal curing. The results presented in this paper show the sensitivity of combined AE and ultrasound experiments to various fundamental mechanisms taking place inside cementitious materials and demonstrate the ability of acoustic emission to evaluate internal curing in a non-destructive and easily implementable way.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21072463