Automatic Detection of Slow Conducting Channels during Substrate Ablation of Scar-Related Ventricular Arrhythmias

Background. Voltage mapping allows identifying the arrhythmogenic substrate during scar-related ventricular arrhythmia (VA) ablation procedures. Slow conducting channels (SCCs), defined by the presence of electrogram (EGM) signals with delayed components (EGM-DC), are responsible for sustaining VAs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of interventional cardiology 2020, Vol.2020 (2020), p.1-13
Hauptverfasser: Laguna, Pablo, Camara, Oscar, Martínez, Juan Pablo, Berruezo, Antonio, Andreu, David, Linhart, Markus, Fernández-Armenta, Juan, Penela, Diego, Acosta, Juan, Soto-Iglesias, David, Jáuregui, Beatriz, Alcaine, Alejandro, Mont, Lluís
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. Voltage mapping allows identifying the arrhythmogenic substrate during scar-related ventricular arrhythmia (VA) ablation procedures. Slow conducting channels (SCCs), defined by the presence of electrogram (EGM) signals with delayed components (EGM-DC), are responsible for sustaining VAs and constitute potential ablation targets. However, voltage mapping, as it is currently performed, is time-consuming, requiring a manual analysis of all EGMs to detect SCCs, and its accuracy is limited by electric far-field. We sought to evaluate an algorithm that automatically identifies EGM-DC, classifies mapping points, and creates new voltage maps, named “Slow Conducting Channel Maps” (SCC-Maps). Methods. Retrospective analysis of electroanatomic maps (EAM) from 20 patients (10 ischemic, 10 with arrhythmogenic right ventricular dysplasia/cardiomyopathy) was performed. EAM voltage maps were acquired during sinus rhythm and used for ablation. Preprocedural contrast-enhanced cardiac magnetic resonance (Ce-CMR) imaging was available for the ischemic population. Three mapping modalities were analysed: (i) EAM voltage maps using standard (EAM standard) or manual (EAM screening) thresholds for defining core and border zones; (ii) SCC-Maps derived from the use of the novel SCC-Mapping algorithm that automatically identify EGM-DCs measuring the voltage of the local component; and (iii) Ce-CMR maps (when available). The ability of each mapping modality in identifying SCCs and their agreement was evaluated. Results. SCC-Maps and EAM screening identified a greater number of SCC entrances than EAM standard (3.45 ± 1.61 and 2.95 ± 2.31, resp., vs. 1.05 ± 1.10; p
ISSN:0896-4327
1540-8183
DOI:10.1155/2020/4386841