Comparison of Feature Selection Techniques for Power Amplifier Behavioral Modeling and Digital Predistortion Linearization

The power amplifier (PA) is the most critical subsystem in terms of linearity and power efficiency. Digital predistortion (DPD) is commonly used to mitigate nonlinearities while the PA operates at levels close to saturation, where the device presents its highest power efficiency. Since the DPD is ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-08, Vol.21 (17), p.5772
Hauptverfasser: Barry, Abdoul, Li, Wantao, Becerra, Juan A., Gilabert, Pere L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The power amplifier (PA) is the most critical subsystem in terms of linearity and power efficiency. Digital predistortion (DPD) is commonly used to mitigate nonlinearities while the PA operates at levels close to saturation, where the device presents its highest power efficiency. Since the DPD is generally based on Volterra series models, its number of coefficients is high, producing ill-conditioned and over-fitted estimations. Recently, a plethora of techniques have been independently proposed for reducing their dimensionality. This paper is devoted to presenting a fair benchmark of the most relevant order reduction techniques present in the literature categorized by the following: (i) greedy pursuits, including Orthogonal Matching Pursuit (OMP), Doubly Orthogonal Matching Pursuit (DOMP), Subspace Pursuit (SP) and Random Forest (RF); (ii) regularization techniques, including ridge regression and least absolute shrinkage and selection operator (LASSO); (iii) heuristic local search methods, including hill climbing (HC) and dynamic model sizing (DMS); and (iv) global probabilistic optimization algorithms, including simulated annealing (SA), genetic algorithms (GA) and adaptive Lipschitz optimization (adaLIPO). The comparison is carried out with modeling and linearization performance and in terms of runtime. The results show that greedy pursuits, particularly the DOMP, provide the best trade-off between execution time and linearization robustness against dimensionality reduction.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21175772