A deletion in the RD105 region confers resistance to multiple drugs in Mycobacterium tuberculosis
The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), especially those that are multidrug resistant poses a serious threat to global tuberculosis control. However, the mechanism underlying the occurrence of drug resistance against more than one drug is poorly understood. Given...
Gespeichert in:
Veröffentlicht in: | BMC biology 2019-01, Vol.17 (1), p.7-7, Article 7 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), especially those that are multidrug resistant poses a serious threat to global tuberculosis control. However, the mechanism underlying the occurrence of drug resistance against more than one drug is poorly understood. Given that the Beijing/W strains are associated with outbreaks and multidrug resistance, they may harbor a genetic advantage and provide useful insight into the disease. One marker found in all Beijing/W Mtb strains is a deletion of RD105 region that results in a gene fusion, Rv0071/74, with a variable number (3-9 m) of VDP (V: Val, D: Asp; P: Pro) repeats (coded by gtggacccg repeat sequences) at the N-terminal. Here, we report that this variable number of VDP repeats in Rv0071/74 regulates the development of multidrug resistance.
We collected and analyzed 1255 Beijing/W clinical strains. The results showed that the number of VDP repeats in Rv0071/74 was related to the development of multidrug resistance, and the deletion of Rv0071/74-9 m from Beijing/W clinical strain restored drug susceptibility. Rv0071/74-9 m also increased resistance to multiple drugs when transferred to different mycobacterial strains. Cell-free assays indicate that the domain carrying 4-9 VDP repeats (4-9 m) showed a variable binding affinity with peptidoglycan and Rv0071/74 cleaves peptidoglycan. Furthermore, Rv0071/74-9 m increased cell wall thickness and reduced the intracellular concentration of antibiotics.
These findings not only identify Rv0071/74 with VDP repeats as a newly identified multidrug resistance gene but also provide a new model for the development of multiple drug resistance. |
---|---|
ISSN: | 1741-7007 1741-7007 |
DOI: | 10.1186/s12915-019-0628-6 |