Reactivity of Bioinspired Magnesium–Organic Networks under CO2 and O2 Exposure

Photosynthesis is the model system for energy conversion. It uses CO2 as a starting reactant to convert solar energy into chemical energy, i.e., organic molecules or biomass. The first and rate-determining step of this cycle is the immobilization and activation of CO2, catalyzed by RuBisCO enzyme, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2019-06, Vol.4 (6), p.9850-9859
Hauptverfasser: Hurtado Salinas, Daniel E, Sarasola, Ane, Stel, Bart, Cometto, Fernando P, Kern, Klaus, Arnau, Andrés, Lingenfelder, Magalí
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photosynthesis is the model system for energy conversion. It uses CO2 as a starting reactant to convert solar energy into chemical energy, i.e., organic molecules or biomass. The first and rate-determining step of this cycle is the immobilization and activation of CO2, catalyzed by RuBisCO enzyme, the most abundant protein on earth. Here, we propose a strategy to develop novel biomimetic two-dimensional (2D) nanostructures for CO2 adsorption at room temperature by reductionist mimicking of the Mg–carboxylate RuBisCO active site. We present a method to synthesize a 2D surface-supported system based on Mg2+ centers stabilized by a carboxylate environment and track their structural dynamics and reactivity under either CO2 or O2 exposure at room temperature. The CO2 molecules adsorb temporarily on the Mg2+ centers, producing a charge imbalance that catalyzes a phase transition into a different configuration, whereas O2 adsorbs on the Mg2+ center, giving rise to a distortion in the metal–organic bonds that eventually leads to the collapse of the structure. The combination of bioinspired synthesis and surface reactivity studies demonstrated here for Mg-based 2D ionic networks holds promise for the development of new catalysts that can work at room temperature.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.9b00762