Reactivity of Bioinspired Magnesium–Organic Networks under CO2 and O2 Exposure
Photosynthesis is the model system for energy conversion. It uses CO2 as a starting reactant to convert solar energy into chemical energy, i.e., organic molecules or biomass. The first and rate-determining step of this cycle is the immobilization and activation of CO2, catalyzed by RuBisCO enzyme, t...
Gespeichert in:
Veröffentlicht in: | ACS omega 2019-06, Vol.4 (6), p.9850-9859 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photosynthesis is the model system for energy conversion. It uses CO2 as a starting reactant to convert solar energy into chemical energy, i.e., organic molecules or biomass. The first and rate-determining step of this cycle is the immobilization and activation of CO2, catalyzed by RuBisCO enzyme, the most abundant protein on earth. Here, we propose a strategy to develop novel biomimetic two-dimensional (2D) nanostructures for CO2 adsorption at room temperature by reductionist mimicking of the Mg–carboxylate RuBisCO active site. We present a method to synthesize a 2D surface-supported system based on Mg2+ centers stabilized by a carboxylate environment and track their structural dynamics and reactivity under either CO2 or O2 exposure at room temperature. The CO2 molecules adsorb temporarily on the Mg2+ centers, producing a charge imbalance that catalyzes a phase transition into a different configuration, whereas O2 adsorbs on the Mg2+ center, giving rise to a distortion in the metal–organic bonds that eventually leads to the collapse of the structure. The combination of bioinspired synthesis and surface reactivity studies demonstrated here for Mg-based 2D ionic networks holds promise for the development of new catalysts that can work at room temperature. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.9b00762 |