On the perfectness of C^{∞,s}-diffeomorphism groups on a foliated manifold
The notion of \(C^{r,s}\) and \(C^{\infty,s}\)-diffeomorphisms is introduced. It is shown that the identity component of the group of leaf preserving \(C^{\infty,s}\)-diffeomorphisms with compact supports is perfect. This result is a modification of the Mather and Epstein perfectness theorem.
Gespeichert in:
Veröffentlicht in: | Rocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica. Opuscula Mathematica 2008-01, Vol.28 (3), p.313-324 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The notion of \(C^{r,s}\) and \(C^{\infty,s}\)-diffeomorphisms is introduced. It is shown that the identity component of the group of leaf preserving \(C^{\infty,s}\)-diffeomorphisms with compact supports is perfect. This result is a modification of the Mather and Epstein perfectness theorem. |
---|---|
ISSN: | 1232-9274 |