Bounding the generation time distribution uncertainty on R0 estimation from exponential growth rates
The basic reproduction number R0 is one of the main parameters determining the spreading of an epidemic in a population of susceptible individuals. Wallinga and Lipsitch proposed a method for estimating R0 using the Euler-Lotka equation, which requires the Laplace transform of the generation interva...
Gespeichert in:
Veröffentlicht in: | Journal of biological dynamics 2024-12, Vol.18 (1), p.2410720 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The basic reproduction number R0 is one of the main parameters determining the spreading of an epidemic in a population of susceptible individuals. Wallinga and Lipsitch proposed a method for estimating R0 using the Euler-Lotka equation, which requires the Laplace transform of the generation interval distribution. The determination of the generation time distribution is challenging, as the generation time is not directly observable. We prove upper and lower bounds on R0 using only the first few moments of the generation interval distributions and study the sensitivity of the bounds to these parameters. The bounds do not require the exact shape of the generation interval distribution and give robust estimates of the r-R0 relationship.The basic reproduction number R0 is one of the main parameters determining the spreading of an epidemic in a population of susceptible individuals. Wallinga and Lipsitch proposed a method for estimating R0 using the Euler-Lotka equation, which requires the Laplace transform of the generation interval distribution. The determination of the generation time distribution is challenging, as the generation time is not directly observable. We prove upper and lower bounds on R0 using only the first few moments of the generation interval distributions and study the sensitivity of the bounds to these parameters. The bounds do not require the exact shape of the generation interval distribution and give robust estimates of the r-R0 relationship. |
---|---|
ISSN: | 1751-3766 1751-3758 1751-3766 |
DOI: | 10.1080/17513758.2024.2410720 |