Valection: design optimization for validation and verification studies

Platform-specific error profiles necessitate confirmatory studies where predictions made on data generated using one technology are additionally verified by processing the same samples on an orthogonal technology. However, verifying all predictions can be costly and redundant, and testing a subset o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2018-09, Vol.19 (1), p.339-11, Article 339
Hauptverfasser: Cooper, Christopher I, Yao, Delia, Sendorek, Dorota H, Yamaguchi, Takafumi N, P'ng, Christine, Houlahan, Kathleen E, Caloian, Cristian, Fraser, Michael, Ellrott, Kyle, Margolin, Adam A, Bristow, Robert G, Stuart, Joshua M, Boutros, Paul C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Platform-specific error profiles necessitate confirmatory studies where predictions made on data generated using one technology are additionally verified by processing the same samples on an orthogonal technology. However, verifying all predictions can be costly and redundant, and testing a subset of findings is often used to estimate the true error profile. To determine how to create subsets of predictions for validation that maximize accuracy of global error profile inference, we developed Valection, a software program that implements multiple strategies for the selection of verification candidates. We evaluated these selection strategies on one simulated and two experimental datasets. Valection is implemented in multiple programming languages, available at: http://labs.oicr.on.ca/boutros-lab/software/valection.
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-018-2391-z