Whole-ventricular irradiation for intracranial germ cell tumors: Dosimetric comparison of pencil beam scanned protons, intensity-modulated radiotherapy and volumetric-modulated arc therapy
•Dosimetric study suggests cognition sparing optimization with PBS-PT > IMRT > VMAT.•If available, PBS-PT is recommended for WV-RT in intracranial germ cell tumors.•IMRT is dosimetrically superior than VMAT regarding neurofunctional OAR sparing. Whole-ventricular radiotherapy (WV-RT) followed...
Gespeichert in:
Veröffentlicht in: | Clinical and translational radiation oncology 2019-02, Vol.15, p.53-61 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Dosimetric study suggests cognition sparing optimization with PBS-PT > IMRT > VMAT.•If available, PBS-PT is recommended for WV-RT in intracranial germ cell tumors.•IMRT is dosimetrically superior than VMAT regarding neurofunctional OAR sparing.
Whole-ventricular radiotherapy (WV-RT) followed by a boost to the tumor bed (WV-RT/TB) is recommended for intracranial germ cell tumors (IGCT). As the critical brain areas are mainly in the target volume vicinity, it is unclear if protons indeed substantially spare neurofunctional organs at risk (NOAR). Therefore, a dosimetric comparison study of WV-RT/TB was conducted to assess whether proton or photon radiotherapy achieves better NOAR sparing.
Eleven children with GCT received 24 Gy(RBE) WV-RT and a boost up to 40 Gy(RBE) in 25 fractions of 1.6 Gy(RBE) with pencil beam scanning proton therapy (PBS-PT). Intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans were generated for these patients. NOAR were delineated and treatment plans were compared for target volume coverage (TVC), homogeneity index (HI), inhomogeneity coefficient (IC) and (N)OAR sparing.
TVC was comparable for all three modalities. Compared to IMRT and VMAT, PBS-PT showed statistically significant optimized IC, as well as dose reduction, among others, in mean and integral dose to the: normal brain (−35.2%, −32.7%; −35.2%, −33.0%, respectively), cerebellum (−53.7%, −33.1%; −53.6%, −32.7%) and right temporal lobe (−14.5%, −31.9%; −14.7%, −29.9%). The Willis’ circle was better protected with PBS-PT than IMRT (−7.1%; −7.8%). The left hippocampus sparing was higher with IMRT. Compared to VMAT, the dose to the hippocampi, amygdalae and temporal lobes was significantly decreased in the IMRT plans.
Dosimetric comparison of WV-RT/TB in IGCT suggests PBS-PT's advantage over photons in conformality and NOAR sparing, whereas IMRT’s superiority over VMAT, thus potentially minimizing long-term sequelae. |
---|---|
ISSN: | 2405-6308 2405-6308 |
DOI: | 10.1016/j.ctro.2019.01.002 |