Eigencurves of the p(·)-Biharmonic operator with a Hardy-type term

This paper is devoted to the study of the homogeneous Dirichlet problem for a singular nonlinear equation which involves the (·)-biharmonic operator and a Hardy-type term that depend on the solution and with a parameter λ. By using a variational approach and min-max argument based on Ljusternik-Schn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Moroccan journal of pure and applied analysis 2020-12, Vol.6 (2), p.198-209
Hauptverfasser: Laghzal, Mohamed, Khalil, Abdelouahed El, Alaoui, My Driss Morchid, Touzani, Abdelfattah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the study of the homogeneous Dirichlet problem for a singular nonlinear equation which involves the (·)-biharmonic operator and a Hardy-type term that depend on the solution and with a parameter λ. By using a variational approach and min-max argument based on Ljusternik-Schnirelmann theory on -manifolds [13], we prove that the considered problem admits at least one nondecreasing sequence of positive eigencurves with a characterization of the principal curve (λ) and also show that, the smallest curve (λ) is positive for all 0 ≤ λ < , with is the optimal constant of Hardy type inequality.
ISSN:2351-8227
2605-6364
2351-8227
DOI:10.2478/mjpaa-2020-0015